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Syntheses and some properties of [2.2..+2]paracyclophanes [cyclic n-mer of p-xylylene, abbreviated as [2*]para-
cyclophane or n®-PCP (n = 3, 4, 5, 6, and 8)] are described. At room temperature, NMR spectra of these com-
pounds showed two singlets of benzene and ethylene proton resonances. At low temperature, however, broadening

‘of signals of the ethylene protons were observed, while the shape of a benzene singlet was not remarkably
changed. This broadening was due to the internal rotation (axial-equatorial exchange) of the ethylene protons,
Based on temperature-dependent NMR spectra, energy barrier of this conformation change was concluded to be
in the interesting order, 4°-PCP ([2.2.2.2]paracyclophane or [2¢|paracyclophane; similar abbreviations are used
throughout this paper) > 5°-PCP > 6°-PCP > 3°-PCP. The activation energy of this conformation change for

4°-PCP was evaluated to be 3.8 kcal/mol.

In earlier papers we have described the chemistry of
[2.2.2]paracyclophane (3°-PCP) and [2.2.2.2]paracyclo-
phane (4°-PCP) where the- planarity of benzene rings was
concluded on spectroscopic ground to be satisfactorily re-
tained.™? In this article, we wish to report the preparations
and some properties of higher {2"]-paracyclophanes (n°-
PCPs), cyclic oligomers of p-xylylene, in connection with
conformation problems which may be very important in
their inclusion.?

Preparations of 5°-PCP, 6°-PCP, and 8°-PCP were suc-
cessful by the modified Wurtz condensation®® of p-xylyl-
ene chloride,® and each paracyclophane was isolated by
means of column chromatography coupled with fractional
crystallization. 6°-PCP and 8°-PCP were also prepared by
the modified Wurtz condensation of p,p’-di(chloromethyl)-
1,2-diphenylethane.” Table I shows some physical proper-
ties of n°-PCPs. Some irregular changes in melting points
of present n°-PCPs are similar to those of reported [2"]me-
tacyclophanes.®

Table I
Physical Properties of n°-PCPs
Crystal
n°-PCP Mp, °c Recrystn solvent form Ref
2°-PCP* 285-287  Acetic acid Needle b
3°-PCP 168 n-Hexane Feather ¢
4°-PCP 185 n-Hexane—ben- Prism d
zene
5°-PCP 170-172 #n-Hexane—ben- Prism e
zene
6°-PCP 200-202 n-Hexane-ben- DPlate e
zene
8°-PCP 273275 n-Hexane-ben- Scale e
zene

@ [2.2]Paracyclophane. * D, J. Cram and H. Steinberg, J. Am.
Chem. Soc., 73, 5691 (1951). ¢ Reference 1. ¢ Reference 2. ¢ This
work.

NMR Spectra of n°~-PCPs. At room temperature, each
paracyclophane showed two singlet NMR absorptions due
to aromatic and aliphatic protons. The aromatic é value
showed the presence of a considerable shielding effect, the
magnitude of which decreased with increase of macrocyclic
ring size (Table II). These observations suggest that ben-
zene rings predominantly (in a statistical sense) take the
“face” conformation® where the aromatic protons are
shielded by other benzene rings and the magnitude of
shielding effect diminishes with increase in the transannu-
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lar distance of a paracyclophane. In order to investigate the
conformation problem of these paracyclophanes, the NMR
spectra of 3°-PCP, 4°-PCP, 5°-PCP, and 6°-PCP were
measured in CDCl3—CH,Cl; or CSs solution at low temper-
ature. The results at —75° in CDCl3—CH,Cl; solution are
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Table II
6 Values and Line Broadening? of n°-PCPs

Line broadening®

{-75°, CDC13-CHipClz)

6 (room

temp, CCly, MeySi)

Compd CHy Arom Ref Cliy Arom
p,p' -Dimethyl- 2.80 6.94 b
bibenzyl
2°-PCP 3.04 6.30 ¢
3°-PCP 2.93 6.62 d 4.9/2.0 3.1/2.0
4°-PCP 2.84 6,65 ¢ s 2.8/1.8
5°-PCP 2.76  6.68 g 7.5/1.8 2.5/1.8
6°-PCP 2.84 6.75 g 1.5/3.3 3.0/3.3
8°-PCP 2.84 6.82 g

@ Relative half-width in hertz (half-width of protons of para-
cyclophanes compared with that of added CH2Cly). * F. A. Bovey,
“NMR Data Tables for Organic Compounds”, Vol. 1, Wiley, New
York, N.Y., 1967, p 426. ¢ D. J. Wilson, V. Boekelheide, and R. W.
Griffin, Jr., J. Am. Chem. Soc., 82, 6302 (1960). ¢ Reference 1.
¢ Reference 2./ Below the coalescence temperature. # This work.

Table II1
Uv Spectra of n°~-PCPs? and p-Xylene?

Compd Ay, mu (loy €) Ay, mu(loge) *3, mu(loge) ryg, mu(log €)
p-Xylene® 274(2.85) 269(2.75) 266(2.73) 260(2.60)
2°-PCP* 302 sh 285(2.41)

(2.19)

3°-PCP 276 (2.89) 269sh 267(2.95) 262(2.83)
(2.88)

4°-PCP 274 (3.13) 267sh 265(3.20) 260(3.09)
(3.16)

5°-PCP 274 (3.24) 267.5sh 265.5 260(3.15)
(3.22) (3.28)

6°-PCP 273.5 267 sh 265 260

8°-PCP 274 267.5sh 265.5 260

@ In hexane.  In heptane. “ “UV Atlas of Organic Compounds”,
Vol. III. ¢D. J. Cram and H. Steinberg, J. Am. Chem. Soc., 73,
5691 (1951).

listed in Table II together with § values at room tempera-
ture. Under the condition investigated and among the com-
pounds investigated, only ethylene protons of 4°-PCP co-
alesced at —71° in CDCl3~CH3Cly or —85° in CSy (AG? _gse
= 9.1 kcal/mol in CS5). During the temperature change, the
signal of ethylene protons changed from singlet to AB
quartet as shown in Figure 1. This indicates that the con-
formation change including ethylene proton (such as axial-
equatorial exchange) begins to freeze at low temperature.
The peak separations of ethylene protons of 4°-PCP at var-
ious temperatures are listed in Table III. The chemical
shift difference (A8, va — vB) for frozen 4°-PCP was esti-
mated to be 51 Hz by means of computation analysis so as
to give the largest correlation coefficient for the linear rela-
tionship between 1/T and log 27(va — vg)7 where Y%7 was
the rate of exchange of nuclei (Figure 2). Thus, the activa-
tion energy (E,) of this conformation change was estimated
to be 3.8 kcal/mol and the frequency factor, ko, to be 3.0 X
108 Hz, The ethylene protons of the other paracyclophanes
did not separate until —=111° in CS. but line broadening
was observed, the magnitude of which was in the order,
5°-PCP =~ 6°-PCP > 3°-PCP. Therefore, the observed
barrier (AG?) of the conformation change of ethylene pro-
tons of these paracyclophanes is concluded to be in the in-
teresting order 4°-PCP > 5°-PCP ~ 6°-PCP > 3°-PCP.
On the other hand, aromatic protons of each paracyclo-
phane showed only small line broadening, which indicated
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Figure 1. '"H NMR spectra of ethylene protons in 4°-PCP at sev-
eral temperatures, 100 MHz, Me,Si, in CS».
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Figure 2. Temperature dependence of the rate of exchange of nu-
clei of ethylene protons of 4°-PCP.

that motions of benzene rings were not remarkably restrict-
ed under the condition investigated (vide infra).

The conformation change for 4°-PCP (Figure 3) is un-
derstood as the axial-equatorial change from the following
considerations.

(1) Ethylene protons of 4°-PCP were frozen to two kinds
of protons at low temperature (Figure 2) and the chemical
shift difference (Ad) for the two different protons was esti-
mated to be 0.51 ppm. This value was reasonably ascribed
to the axial-equatorial difference based on the following
reason. The shift difference between the axial and equato-
rial benzyl protons by the shielding effect from benzene
rings for an “all face” ® conformation (benzenes are perpen-
dicular to the hypothetical molecular plane) was calculat-
ed, as an extreme, by computer with Johnson’s equation!®
to be ca. 1.0 ppm, while for an “all lateral” conformation
(benzenes are on the plane) as an opposite extreme (Figure
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Figure 3. The axial-equatorial exchange of ethylene protons of
4°-PCP.
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Figure 4. Conformation change of 2°-PCP.

3), As was 0 ppm, and for freely rotating benzene rings, Aé
was ca. 0.12 ppm. The present observed value (0.51 ppm)
suggests that the benzene rings still vibrate or rotate
(around a C,-C{-C4~C, axis) to produce a statistically av-
eraged shielding effect; however, “face” conformation is
much favored in a statistical sense under the condition in-
vestigated. This is consistent with the fact that aromatic
protons showed only small line broadening.

(2) E, of the axial-equatorial change was estimated to be
3.8 keal/mol for 4°-PCP and this value suggests a reason-
able connection between present barrier and the usual eth-
ane barrier.1?

The smaller AG* value of 5°-PCP or 6°-PCP than 4°-
PCP may be due to greater flexibility of 5°-PCP or 6°-PCP
than 4°-PCP, but the unexpectedly small AG* value of 3°-
PCP is interesting to note. According to our calculation of
energy of 3°-PCP by means of = approximation (VI/1
method!?), the transannular distance of 3°-PCP seems to
be somewhat in a slightly repulsive region.'® This forces
benzene rings to be apart, making the conformation nearly
eclipsed and raising the bottom of the energy surface (the
gauche conformation). Actually, 2°-PCP, where much larg-
er w—= repulsion is involved, was reported to have a very
low transition region, at near 55 K, from the measurement
of heat capacity of crystals and the AH of the transition to
be only 51 cal/mol.1* This transition was presumed to be
due to the conformational exchange of H, and H, as shown
in Figure 4. X-Ray analysis of 2°-PCP at 93 K also indicat-
ed that this conformation change did take place even at
this very low temperature.!® This small energy barrier of
the axial-equatorial change of 2°-PCP may be ascribed to
the increasing w—= repulsion in the gauche conformation.
This situation seems to be similar to that in 3°-PCP.
Therefore, the expected order of the activation energy for
the conformation change of n°-PCPs is 4°-PCP > 5°-PCP
~ 6°-PCP > 3°-PCP > 2°-PCP, just consistent with the
observed order.

Other Spectral Properties of n°-PCPs. Table III
shows the uv spectra of n°-PCPs together with that of p-
xylene. A considerable bathochromic shift for 2°-PCP is re-
ported where benzene rings are not planar as shown by
X-ray analysis. However, uv spectra of higher paracyclo-
phanes were very similar to that of p-xylene. Therefore, it
should be concluded that benzene rings of these paracyclo-
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phanes, except 2°-PCP, are “normal” (i.e., not appreciably
distorted).

In the region from 400 to 1000 em™1 of ir spectra, p-xy-
lene showed only two sharp absorptions at 796 and 482
cm™~!, Every paracyclophane showed an additional sharp
absorption at near 600 cm~! and near 800 and 500 ¢cm™!
(Table IV). This may be characteristic of paracyclophane,
although details are not yet known.

Table IV
Moderately Intense Absorptions of Ir Spectra of
n°-PCPs at Near 800, 600, and 500 cm—1¢

20.

PCP 3°-pCP 4°-pPCP 59-PCP 6°-PCP 8°.pPCP

807 804, 787 822, 813 816, 806 819 829

623 588 587, 569 594 595 576

509 469 459,° 452° 537° 546,° 463° 548,°
506°

¢ KBr, cm~1. % Moderately weak absorption.

Experimental Section

Materials. 3°-PCP and 4°-PCP were prepared by the modified
Wurtz condensation of p-xylylene chloride in the presence of a
catalytic amount of tetraphenylethylene as described elsewhere.l:2
Combined mixture of several reactions, from which 3°-PCP 4°-
PCP had been already separated,!? were chromatographed on sili-
ca gel. Early elution product with 15% benzene-n-hexane solution
mainly consisted of 5°-PCP. Repeated fractional crystallizations
from benzene-n-hexane gave pure 5°-PCP as colorless prisms in
about 2% yield, based on p-xylylene chloride used: mp 170-172°
(from benzene-n-hexane); mass spectrum m/e (rel intensity) 520
(M*, 0.37), 168 (13), 167 (100), 165 (19), 152 (13); ir (KBr) 3075,
3040, 2995, 2915, 2845, 1511, 1438, 1415, 1310, 1200, 1142, 1093,
1022, 920, 905, 816, 806, 594, 537 cm~1. Anal. Caled for CyoHyg: C,
92.26; H, 7.74. Found: C, 92.02; H, 7.72.

Further elution with 15% benzene—n-hexane solution contained
6°-PCP mainly, which was purified by means of repeated fraction-
al crystallizations. Thus 6°-PCP was obtained as white plates in
about 2% yield based on p-xylylene chloride: mp 200-202° (from
benzene—n-hexane); mass spectrum m/e (rel intensity) 624 (M™,
small), 168 (14), 167 (100), 165 (20), 152 (14); ir (KBr) 3070, 3025,
2995, 2845, 1510, 1440, 1415, 1338, 1200, 1096, 1021, 920, 819, 595
em~L Anal. Caled for CygHug: C, 92.26; H, 7.74. Found: C, 92.00; H,
7.64.

Then elution with 50% benzene-n-hexane gave mainly 8°-PCP,
which was purified similarly. 8°-PCP was obtained as scale-like
crystals and melted at 273-275° (from benzene-n-hexane): mass
spectrum m/e (rel intensity) 832 (M¥, very small), 415 (13}, 311
(18), 156 (31), 119 (41), 118 (18), 117 (25), 103 (95), 102 (100); ir
(KB) 3080, 3030, 3010, 2990, 2915, 2835, 1512, 1438, 1414, 1341,
1200, 1142, 1094, 1023, 924, 825, 576, 546, 506 cm~!, Anal. Caled
for CesHeq: C, 92.26; H, 7.74. Found: C, 92.36; H, 7.73.

8°-PCP and 8°-PCP were also prepared by the modified Wurtz
condensation of p,p’-di(chloromethyl)-1,2-diphenylethane using a
catalytic amount of tetraphenylethylene.

Measurements. NMR spectra were measured by using Varian
T-60 and HA-100 spectrometers. Temperature was determined by
the NMR chemical shift difference between hydroxyl and methyl
protons of methanol.

Uv spectra were measured with a Hitachi Model EPS-3T spec-
trophotometer in hexane. )

Ir spectra were measured with a Hitachi Model 285 ir spectro-
photometer.

The activation energy of the conformation change of 4°-PCP
was calculated from the slope of the plots of log *2n(va — vB)7T Vs.
1/T according to the reported procedure,'® where vo and vy are
corresponding separate chemical shifts of protons A and B and %7
is the exchange rate between A and B (cf. Figure 2).

Registry No.—2°-PCP, 1633-22-3; 3°-PCP, 283-80-7; 4°-PCP,
283-81-8; 5°-PCP, 43082-13-9; 6°-PCP, 43082-14-0; 8°-PCP,
54823-92-6; tetraphenylethylene, 632-51-9; p-xylylene chloride,
623-25-6; p,p’-di(chloromethyl)-1,2-diphenylethane, 38058-86-5.
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Acid-catalyzed hydration of the 3a,5a-cycloandrost-6-ene system gives the 38-hydroxyandrost-5-ene system in
high yield. In the presence of D20, irreversible deuteron attack at the 7 position occurs equally from the o and 8
faces of the steroid. Elimination of methanol from 78-deuterio-68-methoxy-8a,5a-cycloandrostan-178-ol occurs
by pyrolysis with 70% loss of the 78-deuterium (cis elimination), by alumina catalysis with 48% loss of the 78-deu-
terium, and by electron impact in the mass spectrometer with no loss of the 73-deuterium.

Although it had been observed in 19462 that acid-cata-
lyzed hydration of 3a,5a-cyclocholest-6-ene (1, R = CgHi7)
gives rise to cholesterol, no further study of this reaction
had been reported. Acid-catalyzed rearrangements of relat-
ed vinyl cyclopropanes have, however, been examined in
considerable depth.3* Since this hydration appeared to
offer a useful method for the introduction of deuterium at
the 7 position of the biologically important 38-hydroxy-
Ab-steroids, we have determined the direction of addition
of the proton (deuteron) to the 3a,5a-cyclo-A8 system.
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3a,5a-Cycloandrost-6-en-17-one® (1, R = 0) was pre-
pared by the standard procedure of converting 38-hyd-
roxyandrost-5-en-17-one p-toluenesulfonate to 63-me-
thoxy-3a,5a-cycloandrostan-17-one (2), which on treat-
ment with alumina in refluxing xylene gave 1, R = O, in
14% yield. Attempts to convert the 3-p-toluenesulfonate
directly to the 3a,5a-cycloandrost-6-ene system with potas-
sium tert-butoxide in tert-butyl alcohol, or treatment with
alumina or barium oxide in refluxing xylene, led instead to
the formation of the 3,5-diene.

Hydration of 3«,5a-cycloandrost-6-en-17-one (1, R = O)
with D9sSO4 and D30 in dimethyl sulfoxide at 90°, followed
by acid-catalyzed exchange of the 16-deuterium, gave 38-
hydroxyandrost-5-en-17-one with incorporation of 94% of
one nonexchangeable deuterium atom per molecule.

With bis(2-methoxyethyl) ether (diglyme) which had
been distilled from a mixture with D90, 3a,5«-cycloan-
drost-8-en-178-0l (1, R = OH) was converted by DsSO4—
D30 to androst-5-ene-36,173-diol (3, 87% d;, 13% ds),
which crystallized on cooling the sealed tube. Chromium
trioxide oxidation® and isomerization with dilute hydro-
chloric acid gave androst-4-ene-3,17-dione (4, 100% dy, 0%
d2). Unlabeled androst-5-ene-33,178-diol was recovered es-
sentially unlabeled after treatment with DyS04-Dy0O-di-
glyme under the conditions of the hydration reaction, and
in experiments in which 3a,5a-cycloandrost-6-en-178-o0l
was recovered, it too was unlabeled. The additional 13% of
deuterium is therefore incorporated at positions 2, 3, 4, or 6
during the ring-opening hydration reactions.

‘That the deuteron attack on the vinyl cyclopropane (1, R
= OH) had occurred at the 7 position was established since
no loss of label occurred from the derived androst-4-ene-
3,17-dione (100% d1) under conditions ,(D2S04~Do0-di-
glyme) which caused incorporation of five deuterium atoms
into testosterone at carbons 2, 2, 4, 6, and 6. A by-product
in the chromium trioxide oxidation of deuterated androst-
5-ene-38,173-diol (3) is androst-4-ene-3,6,17-trione (5).



