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Syntheses and some properties of [2.2.-.2]paracyclophanes [cyclic n-mer of p-xylylene, abbreviated as [2n]para- 
cyclophane or nO-PCP (n = 3, 4, 5 ,  6, and 8)] are described. Atroom temperature, NMR spectra of these com- 
pounds showed two singlets of benzene and ethylene proton resonances. At  low temperature, however, broadening 
of signals of the ethylene protons were observed, while the shape of a benzene singlet was not remarkably 
changed. This broadening was due to the internal rotation (axial-equatorial exchange) of the ethylene protons. 
Based on temperature-dependent NMR spectra, energy barrier of this conformation change was concluded to be 
in the interesting order, 4O-PCP ([2.2.2.2]paracyclophane or [24]paracyclophane; similar abbreviations are used 
throughout this paper) > 5O-PCP > 6"-PCP > 3"-PCP. The activation energy of this conformation change for 
4"-PCP was evaluated to be 3.8 kcal/mol. 

In  earlier papers we have described the  chemistry of 
[2.2.2]paracyclophane (3O-PCP) and [2.2.2.2]paracyclo- 
phane (4O-PCP) where the  planarity of benzene rings was 
concluded on spectroscopic ground t o  be satisfactorily re- 
tained.lt2 In  this article, we wish t o  report the  preparations 
and  some properties of higher [2n] -paracyclophanes (no- 
PCPs) ,  cyclic oligomers of p-xylylene, in connection with 
conformation problems which may be very important in 
their i n c l u ~ i o n . ~  

Preparations of 5"-PCP, 6"-PCP, and  8O-PCP were suc- 
cessful by the  modified Wurtz c ~ n d e n s a t i o n ~ , ~  of p-xylyl- 
ene chloride,6 and each paracyclophane was isolated by 
means of column chromatography coupled with fractional 
crystallization. 6'-PCP and  8O-PCP were also prepared by 
t h e  modified Wurtz condensation of p,p'-di(chloromethy1)- 
1 ,2-d i~henyle thane .~  Table  I shows some physical proper- 
ties of no-PCPs.  Some irregular changes in  melting points 
of present no-PCPs  are similar t o  those of reported [2"]me- 
tacyclophanes.* 

Table I 
Phys ica l  Propert ies  of no-PCPs  

Crystal 

n o  PCP Mp, O C  Recrystn solvent form Kef 

-___I 

2"-PCP" 285-287 Acetic acid Needle 11 
3"-PCP 168 n-Hexane Feather c 
4"-PCP 185 n-Hexane-ben- P r i s m  (1 

zene 
5"-PCP 170-172 n-Hexane-ben- P r i s m  e 

zene 
V - P C P  200-202 n-Hexane-ben- Plate  e 

zene 
8"-PCP 273-275 n -Hexane-ben - Scale e 

zene 
a [2.2]Paracyclophane. b D .  J .  Cram and H. Steinberg, J A m  

Chem S o c  , 73, 5691 (1951). Reference 1. Reference 2. This 
work. 

NMR S p e c t r a  of no-PCPs .  At room temperature, each 
paracyclophane showed two singlet NMR absorptions due 
t o  aromatic and aliphatic protons. T h e  aromatic 6 value 
showed the  presence of a considerable shielding effect, the  
magnitude of which decreased with increase of macrocyclic 
ring size (Table 11). These observations suggest t h a t  ben- 
zene rings predominantly (in a statistical sense) take the  
"face" conformationg where the aromatic protons are  
shielded by other benzene rings and t h e  magnitude of 
shielding effect diminishes with increase in the  transannu- 

ClCH, 

Ph Ph 

+ 

3"-PCP 
4"-PCP 

+ 

5O-PCP 

P 9, 
6"-PCP 

8"-PCP 

lar distance of a paracyclophane. In  order to  investigate the  
conformation problem of these paracyclophanes, the  NMR 
spectra of 3O-PCP, 4O-PCP, 5O-PCP, and 6O-PCP were 
measured in  CDC13-CHzC12 or CS2 solution a t  low temper- 
ature. T h e  results a t  -75' in CDC13-CH2C12 solution are 
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Table  I1 
6 Values  a n d  Line Broadeninga of n"-PCPs 

6 (room Line broadeninga 

temp,  CCI4, X l c 4 S i )  (-75', CDC13-CII2C12) 

Conq,d CI12 Arom Kef CI l2  A r o m  

)$'-Dimethyl- 2.80 6.94 h 

2"-PCP 3.04 6.30 c 
3"-PCP 2.93 6.62 d 4.9/2.0 3.1/2.0 
4"-PCP 2.84 6.65 c f 2.8/1.8 
5" -PCP 2.76 6.68 g 7.5/1.8 2.5/1.8 
6"-PCP 2.84 6.75 g 7.5/3.3 3.0/3.3 
8"-PCP 2.84 6.82 g 

"Relative half-width in hertz (half-width of protons of para- 
cyclophanes compared with that of added CHzC12). F .  A. Bovey, 
"NMR Data Tables for Organic Compounds", Vol. 1, Wiley, New 
York, N.Y.. 1967, p 426. D. J .  Wilson, V. Boekelheide, and R. W. 
Griffin, Jr., J .  A m .  Chem. Soc., 82, 6302 (1960). dReference 1. 
e Reference 2. Below the coalescence temperature. This work. 

bibenzyl 

Table  I11 
Uv Spect ra  of no-PCPsQ a n d  p-Xyleneb 

C o m p l  A I ,  n u  (log e )  h z ,  me(1oq E )  h3, mu (log E )  h 4 ,  !nu( log  e )  

)-Xylene" 274 (2.85) 269 (2.75) 266 (2.73) 260 (2.60) 
2"-PCPd 302 s h  285 (2.41) 

(2.19) 
3"-PCP 276 (2.89) 269 s h  267 (2.95) 262 (2.83) 

(2.88) 

(3.16) 
5"-PCP 274 (3.24) 267.5sh 265.5 260 (3.15) 

(3.22) (3.28) 
6"-PCP 273.5 267 sh  265 260 
8"-PCP 274 267.5sh 265.5 260 

a In hexane. t> In heptane. ' "UV Atlas of Organic Compounds", 
Vol. 111. D .  J .  Cram and H .  Steinberg, J .  A m  Chem. SOC , 73, 
5691 (1951). 

4"-PCP 274 (3.13) 267 sh  265 (3.20) 260 (3.09) 

I " " ' "  ' ' " ~ ' ' ' '  " 1 L  

t 6  5 

Figure 1.  'H NMR spectra of ethylene protons in 4"-I'CP at sev- 
eral temperatures, 100 MHz, MejSi, in CSn. 

listed in Table  I1 together with 6 values at room tempera- 
ture. IJnder the  condition investigated and among the com- 
pounds investigated, only ethylene protons of 4O-PCP co- 
alesced a t  - 7 1 O  in CDCls-CH2C12 or -85' in CS2 (AG*-sso 
= 9.1 kcal/mol in CS2). During the temperature change, the  
signal of ethylene protons changed from singlet to  AB 
quartet  as shown in Figure 1. This  indicates tha t  the  con- 
formation change including ethylene proton (such as axial- 
equatorial exchange) begins to  freeze a t  low temperature. 
T h e  peak separations of ethylene protons of 4O-PCP a t  var- 
ious temperatures are listed in Table 111. T h e  chemical 
shift difference (A6, IJA - u ~ )  for frozen 4O-PCP was esti- 
mated to  be 51 Hz by means of computation analysis so as 
to  give the largest correlation coefficient for the  linear rela- 
tionship between 1/T and log Z T ( U A  - U B ) T  where l/2r was 
the rate of exchange of nuclei (Figure 2). Thus, the activa- 
tion energy (E,)  of this conformation change was estimated 
t o  be 3.8 kcal/mol and the frequency factor, ho, to  be 3.0 X 
lo6 Hz. T h e  ethylene protons of the other paracyclophanes 
did not separate until -111' in CS2 but  line broadening 
was observed, the magnitude of which was in the  order, 
5O-PCP = 6'-PCP > 3'-PCP. Therefore, the  observed 
barrier (AGZ) of the conformation change of ethylene pro- 
tons of these paracyclophanes is concluded to  be in the in- 
teresting order 4O-PCP > 5O-PCP = 6O-PCP > 3O-PCP. 
On the  other hand, aromatic protons of each paracyclo- 
phane showed only small line broadening, which indicated 

1 / T  x 103 

Figure 2. Temperature dependence of the rate of exchange of nu- 
clei of ethylene protons O ~ ' ~ ~ - P C P .  

t h a t  motions of benzene rings were not remarkably restrict- 
ed under the condition investigated (vide infra). 

T h e  conformation change for 4O-PCP (Figure 3) is un- 
derstood as the  axial-equatorial change from the following 
considerations. 

(1) Ethylene protons of 4O-PCP were frozen to  two kinds 
of protons a t  low temperature (Figure 2) and the chemical 
shift difference (Ah) for the two different protons was esti- 
mated to  be 0.51 ppm. This  value was reasonably ascribed 
t o  the  axial-equatorial difference based on the following 
reason. T h e  shift difference between the axial and equato- 
rial benzyl protons by the  shielding effect from benzene 
rings for an "all face" conformation (benzenes are perpen- 
dicular t o  the hypothetical molecular plane) was calculat- 
ed, as  a n  extreme, by computer with Johnson's equationlo 
to  be ca. 1.0 ppm, while for an "all lateral" conformation 
(benzenes are on the plane) as an opposite extreme (Figure 
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Figure 3. The axial-equatorial exchange of ethylene protons 
40-PCP. 

phanes, except 2O-PCP, are "normal" (Le., not appreciably 
distorted). 

In the region from 400 to 1000 cm-l of ir spectra, p-xy- 
lene showed only two sharp absorptions a t  796 and 482 
cm-l. Every paracyclophane showed an additional sharp 
absorption a t  near 600 cm-l and near 800 and 500 cm-l 
(Table IV). This may be characteristic of paracyclophane, 
although details are not yet known. 

Table  IV 
Moderately In tense  Absorptions of Ir Spec t ra  of 

no-PCPs  at Near  800.600. and 500 cm-1 a 

He 
Ha 

Figure 4. Conformation change of 2O-PCP. 

3), 1 6  was 0 ppm, and for freely rotating benzene rings, A6 
was ca. 0.12 ppm. The  present observed value (0.51 ppm) 
suggests t ha t  the benzene rings still vibrate or rotate 
(around a C,-C1-C4-Ca. axis) to produce a statistically av- 
eraged shielding effect; however, "face" conformation is 
much favored in a statistical sense under the condition in- 
vestigated. This is consistent with the fact t ha t  aromatic 
protons showed only small line broadening. 

(2) E ,  of the axial-equatorial change was estimated to  be 
3.8 kcal/mol for 4O-PCP and this value suggests a reason- 
able connection between present barrier and the usual eth- 
ane barrier.ll 

The smaller AGZ value of 5O-PCP or 6"-PCP than 4'- 
P C P  may be due to  greater flexibility of 5O-PCP or 6O-PCP 
than  4'-PCP, but the unexpectedly small AGi  value of 3'- 
P C P  is interesting to  note. According to our calculation of 
energy of 3O-PCP by means of T approximation (VU1 
method12), the transannular distance of 3O-PCP seems to 
be somewhat in a slightly repulsive region.13 This forces 
benzene rings to  be apart ,  making the conformation nearly 
eclipsed and raising the bottom of the energy surface (the 
gauche conformation). Actually, 2'-PCP, where much larg- 
er T-T repulsion is involved, was reported to  have a very 
low transition region, a t  near 55 K, from the measurement 
of heat capacity of crystals and the AH of the transition to 
be only 51 cal/mol.14 This transition was presumed to be 
due to the conformational exchange of Ha and He as shown 
in Figure 4. X-Ray analysis of 2O-PCP a t  93 K also indicat- 
ed that  this conformation change did take place even a t  
this very low temperature.lj This small energy barrier of 
the axial-equatorial change of 2"-PCP may be ascribed to  
the increasing T-T repulsion in the gauche conformation. 
This situation seems to be similar to that  in 3O-PCP. 
Therefore, the expected order of the activation energy for 
the conformation change of no -PCPs  is 4"-PCP > 5O-PCP 
N 6"-PCP > 3O-PCP > 2'-PCP, just consistent with the 
observed order. 

O t h e r  S p e c t r a l  P rope r t i e s  of no-PCPs .  Table I11 
shows the uv spectra of no-PCPs  together with that  of p- 
xylene. A considerable bathochromic shift for 2O-PCP is re- 
ported where benzene rings are not planar as shown by 
X-ray analysis. However, uv spectra of higher paracyclo- 
phanes were very similar to  that  of p-xylene. Therefore, it 
should be concluded that  benzene rings of these paracyclo- 

of 20- 

PCP 30-PCP 40-PCP SO-PCP Go-PCP 8O-PCP 

807 804, 787 822, 813 816, 806 819 829 
623 588 587, 569 594 595 576 
509 469 459,b 452* 537b 546, 463 546, 

a KBr, cm-l. Moderately weak absorption. 
506b 

Exper imen ta l  Section 

Materials. 3O-PCP and 4O-PCP were prepared by the modified 
Wurtz condensation of p-xylylene chloride in the presence of a 
catalytic amount of tetraphenylethylene as described elsewhere.'Z2 
Combined mixture of several reactions, from which 3"-PCP 4 O -  
PCP had been already were chromatographed on sili- 
ca gel. Early elution product with 15% benzene-n-hexane solution 
mainly consisted of 5" -PCP. Repeated fractional crystallizations 
from benzene-n-hexane gave pure 5O-PCP as colorless prisms in 
about 2% yield, based on p-xylylene chloride used: mp 170-172' 
(from benzene-n- hexane); mass spectrum m/e (re1 intensity) 520 
(Mf, 0.37), 168 (131, 167 (loo), 165 (19), 152 (13); ir (KBr) 3075, 
3040, 2995, 2915, 2845, 1511, 1438, 1415, 1310, 1200, 1142, 1093, 
1022, 920, 905, 816, 806, 594, 537 cm-l. Anal. Calcd for C4oH4o: C, 
92.26; H, 7.74. Found: C, 92.02; H, 7.72. 

Further elution with 15% benzene-n- hexane solution contained 
6"-PCP mainly, which was purified by means of repeated fraction- 
al crystallizations. Thus 6O-PCP was obtained as white plates in 
about 2% yield based on p-xylylene chloride: mp 200-202O (from 
benzene-n-hexane); mass spectrum m/e (re1 intensity) 624 (M+, 
small), 168 (14), 167 (loo), 165 (20), 152 (14); ir (KBr) 3070, 3025, 
2995, 2845, 1510, 1440, 1415, 1338, 1200, 1096, 1021, 920, 819, 595 
crn-l. Anal. Calcd for C48H48: C, 92.26; H, 7.74. Found: C, 92.00; H, 
7.64. 

Then elution with 50% benzene-n- hexane gave mainly 8O-PCP, 
which was purified similarly. 8O-PCP was obtained as scale-like 
crystals and melted at  273-275' (from benzene-n- hexane): mass 
spectrum m/e (re1 intensity) 832 (M+, very small), 415 (13), 311 
(18), 156 (31), 119 (41), 118 (18), 117 (251, 103 (951, 102 (100); ir 
(KB) 3080, 3030, 3010, 2990, 2915, 2835, 1512, 1438, 1414, 1341, 
1200, 1142, 1094, 1023, 924, 825, 576, 546, 506 cm-l. Anal. Calcd 
for C64H64: C, 92.26; H, 7.74. Found: C, 92.36; H, 7.73. 

6O-PCP and 8O-PCP were also prepared by the modified Wurtz 
condensation of p,p'-di(chloromethyl)-1,2-diphenylethane using a 
catalytic amount of tetraphenylethylene. 

Measurements. NMR spectra were measured by using Varian 
T-60 and HA-100 spectrometers. Temperature was determined by 
the NMR chemical shift difference between hvdroxvl and methyl " "  

protons of methanol. 
Uv sDectra were measured with a Hitachi Model EPS-3T smc- 

trophotometer in hexane. 
Ir spectra were measured with a Hitachi Model 285 ir spectro- 

photometer. 
The activation energy of the conformation change of 4"-PCP 

was calculated from the slope of the plots of log " 2 7 ~ ( u ~  - V B ) T  vs. 
1/T according to the reported procedure,16 where U A  and UB are 
corresponding separate chemical shifts of protons A and B and %r 
is the exchange rate between A and B (cf. Figure 2). 

Registry No.-2"-PCP, 1633-22-3; 3'-PCP, 283-80-7; 4'-PCP, 
283-81-8; 5'-PCP, 43082-13-9; 6"-PCP, 43082-14-0; 8'-PCP, 
54823-92-6; tetraphenylethylene, 632-51-9; p-xylylene chloride, 
623-25-6; p,p'-di(chloromethyl)-1,2-diphenylethane, 38058-86-5. 
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Acid-catalyzed hydration of the 3a,5a-cycloandrost-6-ene system gives the 3P-hydroxyandrost-5-ene system in 
high yield. In the presence of DzO, irreversible deuteron attack at  the 7 position occurs equally from the sy and p 
faces of the steroid. Elimination of methanol from 7~-deuterio-6~-methoxy-3a,5a-cycloandrostan-l7~-01 occurs 
by pyrolysis with 70% loss of the 7P-deuterium (cis elimination), by alumina catalysis with 48% loss of the 7P-deu- 
terium, and by electron impact in the mass spectrometer with no loss of the 7P-deuterium. 

Although i t  had been observed in 1946* that  acid-cata- 
lyzed hydration of 3a,5a-cyclocholest-6-ene (1, R = C8H17) 
gives rise to  cholesterol, no further study of this reaction 
had been reported. Acid-catalyzed rearrangements of relat- 
ed vinyl cyclopropanes have, however, been examined in 
considerable d e ~ t h . ~ , ~  Since this hydration appeared to  
offer a useful method for the introduction of deuterium a t  
the  7 position of the biologically important 30-hydroxy- 
A5-steroids, we have determined the direction of addition 
of the  proton (deuteron) to  the 3a,5a-cyclo-A6 system. 

3a,5a-Cycloandrost-6-en-17-one5 (1, R = 0) was pre- 
pared by the standard procedure of converting 3P-hyd- 
roxyandrost-5-en-17-one p-toluenesulfonate to 6P-me- 
thoxy-3a,5a-cycloandrostan-17-one (2), which on treat-  
ment  with alumina in refluxing xylene gave 1, R = 0, in 
14% yield. Attempts to convert the 3-p- toluenesulfonate 
directly t o  the 3a,5a-cycloandrost-6-ene system with potas- 
sium ter t -  butoxide in ter t -  butyl alcohol, or treatment with 
alumina or barium oxide in refluxing xylene, led instead to  
the formation of the 3,5-diene. 

R 

1 

3 

0 
5 

Hydration of 3a,5a-cycloandrost-6-en-17-one (1, R = 0) 
with DzS04 and DzO in dimethyl sulfoxide a t  90°, followed 
by acid-catalyzed exchange of the 16-deuterium, gave 3p- 
hydroxyandrost-5-en-17-one with incorporation of 94% of 
one nonexchangeable deuterium atom per molecule. 

With bis(2-methoxyethyl) ether (diglyme) which had 
been distilled from a mixture with Dz0, 3a,5ai-cycloan- 
drost-6-en-176-01 (1, R = OH) was converted by D2S04- 
DzO to androst-5-ene-3P,17P-diol (3, 87% dl, 13% dz), 
which crystallized on cooling the sealed tube. Chromium 
trioxide oxidation6 and isomerization with dilute hydro- 
chloric acid gave androst-4-ene-3,17-dione (4, 100% dl, 0% 
dz) .  Unlabeled androst-5-ene-3&17P-diol was recovered es- 
sentially unlabeled after treatment with DzS04-DzO-di- 
glyme under the conditions of the hydration reaction, and 
in experiments in which 3a,5a-cycloandrost-6-en-l7~-ol 
was recovered, it too was unlabeled. The  additional 13% of 
deuterium is therefore incorporated a t  positions 2 , 3 , 4 ,  or 6 
during the ring-opening hydration reactions. 

Tha t  the deuteron attack on the vinyl cyclopropane (1, R 
= OH) had occurred a t  the 7 position was established since 
no loss of label occurred from the derived androst-4-ene- 
3,17-dione (100% dl) under conditions (DzS04-D20-di- 
glyme) which caused incorporation of five deuterium atoms 
into testosterone a t  carbons 2, 2, 4, 6, and 6. A by-product 
in the chromium trioxide oxidation of deuterated androst- 
5-ene-36,17P-diol (3) is androst-4-ene-3,6,17-trione ( 5 ) .  
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